
However, during the period of creation of the general theory of relativity Einstein was 
entirely guided by the equivalence principle in its initial formulation which therefore played 
an heuristic role in the construction of the theory [32, p. 400]: "The entire theory arose on 
the basis of the conviction that in a gravitational field all physical processes occur in 
exactly the same way as without a gravitational field but in an appropriately accelerated 
(three-dimensional) coordinate system (the "equivalence hypothesis"). 

Since at that time, thanks to a discovery of G. Minkowski, it was known that to dif- 
ferent systems of reference there corresponds a different (and in the general case nondiago- 
nal) metric of space--time, Einstein and Grossman arrived at the conclusion that the field 
variable for the gravitational field should be the metric tensor of a Riemannian space--time 
which must be determined by the distribution and motion of matter. There thus arose the idea 
of the connection of the geometry of space--time with matter. 

Proceeding from these considerations, Einstein and Grossman in a purely intuitive man- 
ner attempted to establish the form of the equations connecting the components of the metric 
tensor of Riemannian space--time with the energy--momentum tensor of matter. After long un- 
successful attempts such equations were found by Einstein at the end of 1915. 

Since these equations were obtained on the basis of a variational principle somewhat 
earlier by the mathematician D. Hilbert, we shall call them the Hilbert--Einstein equations. 

2. Einstein's Theory of Gravitation 

Using the Lagrangian formalism, we shall establish the basic relations of Einstein's 
theory and also consider a number of questions needed below. 

As is known, to find the field equations of any theory it is first necessary to con- 
struct a density of the Lagrange function (or simply a Lagrangian density) which should be 
a scalar density of weight +I. In the general theory of relativity the field variable is the 
metric tensor of Riemannian space--time gni; therefore, the simplest Lagrangian density of the 
gravitational field Lg has the form 

where g is the determinant of the metric tensor gni, and R is the scalar curvature of Rie- 
mann space--time. 

In Einstein's theory the Lagrangian density of matter LM is usually obtained from the 
corresponding expression of special relativity written in an arbitrary curvilinear coordinate 
system by replacing the metric tensor of flat space--time Yni by the metric tensor of Rie- 
mannian space--time gni. Thus, the action function of the gravitational field and matter in 
the general gheory of relativity has the form 

c ~ + 1 J = - - ~  g V - - g ~ d 4 x  --~-f LM(,A, gni)d4x, (2,1) 

where G is the gravitational constant, G ~ 6.67-10 -8 cm3/(g'sec2), c is the velocity of light, 
and ~a are the remaining fields of matter. 

To obtain the equations of the gravitational field we must vary the action function 
(2.1) with respect to the components of the metric tensor gni. Since the expression (2.1) 
contains covariant as well as contravariant components of the metric tensor, we shall vary 
the action function with respect to them as independent variables and then consider the re- 
lation between their variations 

6gnz__= __ gntg~l~gmz" (2.2) 

We can  t h e r e f o r e  w r i t e  t h e  e x p r e s s i o n  f o r  t h e  s y m m e t r i c  ene rgy-momentum t e n s o r  o f  m a t t e r  
in  R i e m a n n i a n  s p a c e - - t i m e  T n i  i n  t h e  fo rm 

Tn~_.  2 ALM. : 2 [ ~6L~ __ n~" ~rn" __SL M "1 
V-~gg Agn, V--~-g ~gnz g g 6g'nt J ' ( 2 . 3 )  

where 6LM/6gni and 6LM/6g mi are the Euler--Lagrange variations with respect to the covariant 
and hence the contravariant components of the metric tensor of Riemannian space--time. 
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By definition, the Euler--Lagrange variation has the form 

6L OL aL aL ( 2 . 4 )  
O ( O h m S )  " " " 

We shall compute the variation 6J for an arbitrary infinitesimal transformation of the 
field variable gni without considering either the coordinate system or points of space--time: 

e~ ~ { ~L M + 8L M - - - -  ---'gR.~6g -t-]/---gg"~6R.i}-l-ll d4x L 6g., 6g~t ag mt 

Assuming t h a t  on t h e  b o u n d a r i e s  o f  t h e  r e g i o n  of  i n t e g r a t i o n  of  t h e  v a r i a t i o n  of  t h e  
m e t r i c  t e n s o r  o f  R i e m a n n i a n  s p a c e - - t i m e  v a n i s h e s  and c o n s i d e r i n g  t h e  e x p r e s s i o n s  ( 2 . 2 )  and 
( 2 . 3 )  and a l s o  t h e  r e l a t i o n s  

1 6 V --g = ~ V - g g " Z 6 g . i ,  

~ d 4x --ggn~6Rni=O, V 

from this we have 

By t h e  p r i n c i p l e  o f  l e a s t  a c t i o n ,  t h i s  e x p r e s s i o n  must  be e q u a l  t o  z e r o .  S ince  i n s i d e  t h e  
region of integration 6gni ~ 0, this condition requires that the Hilbert--Einstein equations 
be satisfied: 

R"~--~ Rg 8aa  T~. ( 2 . 5 )  
C 4 

I n  mixed c o m p o n e n t s  t h e  H i l b e r t - - E i n s t e i n  e q u a t i o n s  ( 2 . 5 )  have  t h e  fo rm 

1 . n ~  8 n O  ( 2 . 6 )  RI~--~0~ R=-7~ T~ ~. 

n Contracting indices in Eq. (2.6) and introducing the notation T = Tn, we have 

8nO T. ( 2 . 7 )  
�9 ~ C4 

Therefore, the Hilbert--Einstein equations (2.5) can be written in another equivalent 
form 

R n i _ _  8 n O  --e4 \T"' "2 gn'T 7. (2 .8 )  

Away from mat te {  where T n i  = 0, f rom exp ress ion  (2 .5 )  we o b t a i n  the vacuum H i l b e r t - -  
Einstein equations 

I 
R n~- ~gni R=0. (2.9) 

We shall now establish some relations of Einstein's theory needed below. 

Since the curvature tensor R~Im of Riemannian space--time satisfies the Bianchi--Padov 
identity 

I i i 

raising the index n and contracting the indices ij and nm, we obtain 

Thus, the covariant divergence in Riemannian space--time of the left side of the Hilbert--Ein- 
stein equations (2.6) automatically vanishes. Hence, for self-consistency of Einstein's 
theory the covariant divergence of the right side of Eqs. (2.6) must also vanish identically. 
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In order to see this, we consider the second term in the action function (2.1) corre- 

sponding to the action function of matter 

'f J11~:--[- LM(gni, ~A) d 4X. (2.10) 

Since the first term in expression (2.1) does not depend on the fields of matter ~A , 
varying the action function of matter (2.10) with respect to the fields ~A , we obtain the 
equations of motion of matter in Riemannian space--time 

6L M :0. (2 .11 )  

We now make an infinitesimal transformation of the coordinate system 

x'~=x~ + ~(x), (2.12) 

where ~i is an infinitely small four-vector. 

This transformation generates coordinate variation of the functions 6c~ A and ~cgni and 
also the limits of integration in the expression (2.10). Up to linear terms in the infinitely 
small quantity ~i(x) we have 

_t_ O~A (2 13) ~~ (x) = % (x') - ~A (x) = ~ ( x ) -  ~ ( x ) _  o~,~ ~ (x). 

From this it follows that coordinate variation does not commute with the operation of par- 
tial differentiation: 

a. ~ = - - ~ w  a ~  (x) a~ ~ a ~  " 

Noncommutativity of coordinate variation with partial differentiation is connected with the 
fact that in definition (2.13) the difference of field functions before and after the co- 
ordinate transformation (2o12) is taken, while the argument of the field function after 
transformation is the image of the argument of the field function before variation, i.e., 
formally they have different arguments, although they pertain to the same point of space-- 
time. Coordinate variation also does not commute with the operation of integration: 

a~ n (x)~ 
~. ~d'x/(~):~d'-F./(~)+/(~) ... j" 

We note also that coordinate variation of a scalar is equal to zero: 

~,, (x) = ,' (x') --, (x) = 0. 

With the view of application below of coordinate transformation (2.12) to the action function 
(2.10), it is useful to separate out from coordinate variation the variation in the spirit of 
the Lie differential which commutes with partial differentiation. 

We have by definition 

6L~A (X) = ~ A (X) - -  ~A (X). ( 2 .  1 4 ) 

The c o o r d i n a t e  v a r i a t i o n  can t h e n  be w r i t t e n  in  t he  form 

6.~A (X) = % (X') - -  ~ (X) + 8 ~ A  (X). 

R e t a i n i n g  o n l y  te rms  l i n e a r  in  ~ n ( x ) ,  we o b t a i n  f i n a l l y  

8.~A (X) =SZ~A (X) __ O~A (x) ~n (X). 

S y m b o l i c a l l y  t h i s  r e s u l t  can  be r e p r e s e n t e d  in  t he  form 

whereby 

O 0 
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Since the action function of matter (2.10) is a scalar, under coordinate transformation 
(2.12) it does not change: 6cJ M = 0. This implies that 

I d4x{6LLM Vn(LM~)}-----O. + 

Taking the Lie variation of the Lagrangian density of matter, we obtain 

8Lm V n j ~ } = 0 ,  g d4x { ~ S z g t a +  ~--~a 6z~A-{- 

where the explicit form of the current jn is inconsequential. 

If the equations of motion of matter (2.11) are satisfied, this expression simplifies: 

4 (ALM Vnjn}._~O. (2.15) 

In relation (2.15) the Lie variation of each of the 10 components of the metric tensor 
of Riemannian space--time are not independent and can be expressed in terms of the four com- 
ponents of the vector ~n. We shall find this dependence. By definition (2.14) we have 

6Lgni= g,m ( X ) -  gn~ (X). (2.1 6 ) 

Since under  c o o r d i n a t e  t r a n s f o r m a t i o n s  the  m e t r i c  t e n s o r  of  Riemannian space-- t ime p o s s e s s e s  
the  t r a n s f o r m a t i o n  law 

g,~t ( x ' ) =  ax'~ ax't o~" o~' g.~(x (X' )), 

in the case of transformation (2.12) up to linear terms in ~n we obtain 

g, mt (X -~- ~) = gtm (X) ~ gt~ (X) a~ m -}- gins (x) Osg t. 

From t h i s  i t  f o l l o w s  t h a t  

g,~t (x) = gmt (x) + gt~ (x) 0~  ~ + g~S (x) a~  t --  ~ (x) a~g ~ (x). 

Substituting this relation into expression (2.16), we have 

6Lg mt (X) =g" t  (x) a,,~ m +gin" (X) OA t (X) --  ~" (X) O.g TM (x) = Vzg ~ -t- V~g z. 

Because of the relation 

we obtain finally 

6Lgni = -- gnmgil6zg mr, 

8zg.i = -- V.~i- Vi~n. 

Considering this expression, we transform relation (2.15) to the form 

. A--~T.~ +vn ~T.~]J= " 

Since the components of the vectors ~n inside the region of integration and on its surface 
are independent and arbitrary, this implies that 

ALM = Vi [ ] / ' ~ T n q  :]/'~-~-gVi Tm =0.  (2.1 7 ) 
- - 2 ~ t  Agnt 

Thus, the covariant divergence in Riemannian space--time of the right side of the Hilbert-- 
Einstein equations is identically zero. 

One of the first exact solutions of the Hilbert--Einstein equations found in the general 
theory of relativity is the Schwarzschild solution describing a static, spherically symmetric 
gravitational field. Such a field can be created by any source the matter in which is dis- 
tributed in a spherically symmetric manner. Spherical symme[ry of the gravitational field 
means that the metric of Riemannian space time in the present case must be identical at all 
points an equal distance from the source. 
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Proceeding from the symmetry of the problem, we shall determine which components of the 
metric tensor of Riemann space--time will be nonzero in this case. We place the origin of the 
coordinate system at the center of the source. Under rotations of this coordinate system by 
an arbitrary angle the physical situation must not change due to the spherical symmetry of 
the distribution of matter. Therefore, the components of the metric tensor gni after rota- 
tion must be the same functions of the transformed argument as the original functions of 
their original arguments, i.e., their tensor must be form-invariant under rotation of the 
coordinate system. 

This implies that in spherical coordinates only the components g~={goo(r',t'), go~(r', t'), 
g~(r', t ~)=goe(r~, t')sini0}, can be nonzero components of the metric tensor of Riemannian space-- 
time, since only in this fashion is the tensor gni form-invariant under rotation. However~ 
the condition of spherical symmetry still does not establish the final form of the metric 
tensor of Riemannian space--time, since we still have the possibility of making any admis- 
sible* transformations of coordinates and time r' = r'(r, t) and t' = t'(r, t) which do not 
destroy the condition of spherical symmetry of the metric but alter the magnitude of the com- 
ponents g00, g0r and grr of the metric tensor gni. 

Usuallythe functions r' = r'(r, t), t' = t'(r, t) are chosen so that the component g0r 
in the new coordinate system vanishes, while the componentg08coincideswithitspseudo-Euclid- 
ean limit geG = --ri. Coordinates satisfying these conditions are called Schwarzschild coor- 
dinates.' A distinguishing feature of these coordinates is that the length of a circle with 
center at the origin is equal to 2~r. However, for our purposes it is more convenient to 
use isotropic spherical coordinates in which the spatial part of an interval is conformally 
Euclidean. 

We therefore subject the choice of functions r' = r'(t, r) and t' = t'(r, t) to the con- 
ditions 

go~=O, goo=r2&~. 
The static, spherically symmetric gravitational field in isotropic coordinates will then 

be described by the metric 
/ 

ds  ~ = goo (r) d d t ~  + &~ (r) [dr 2 + r 2 (dO ~ + sin 20d~2)]. ( 2 . 1 8 )  

Since in admissible coordinates the conditions g00 > 0, grr < 0 must be satisfied, it is 
convenient to write expression (2.18) in the form 

ds  ~ = c 2 e 2 , ' d t  ~ - -  e zx [dr 2 @ r 2 (dO 2 + s i n  2 0 d ~ 2 ) ] ,  ( 2 . 1 9  ) 

where v = v(r) and % = %(r) are unknown functions which must be determined from the Hilbert-- 
Einstein equations. 

Thus, the convariant components of the metric tensor of Riemannian space--time in the 
present case have the form 

goo----e2"v; grr----- --e2~; 
g~o--~ -- r2e2X; g~---- -- r 2 sin = (}e z~. 

( 2 . 2 0 )  

For the contravariant components of the metric tensor we have 

goo=e2-v;  grr_____ _ e - 2 ~ ;  

gOB__ _ I_ e_2~" g ~ _  l e_2~ 
- -  r 2 ' r 2 sin 2 O " 

(2.21) 

Using expressions (2.20) and (2.21), it is easy to determine the nonzero components of the 
connection of Riemannian space--time: 

*Transformations of coordinates of systems of reference which can be realized by real physi- 
cal bodies and processes we call admissible transformations. Mathematically, this condition 
is equivalent to the requirement [28] that in these reference systems the quadratic form with 
coefficients gab be negative definite, while the component g00 of the metric tensor is posi- 
tive definite: g00 > O, g~Bdx~dxB < O. 

1709 



F [ 0 =  - - ( r + r W ) ;  P ~ =  --(r-{-r 2;V) sin 20; 

F ~  = - -  s i n  O c o s  O; F ~ =  c o s O .  (2 22) 
sin 0 ' 

F0 r~  I __~, 

where the prime denotes the derivative with respect to r. Computing the components of the 
Ricci tensor and substituting them into the Hilbert--Einstein equations (2.16), we obtain 

- -  [2s163 e-2~-8~G- c' ToO; 

2 ' 8 ~ G , . T  r. - - [ ~ % ' 2 + 2 ~ " ~ ' + 2 ~ ' + T v ' ] e - 2 ~ ' - - - - -  0 ' r ,  

(2.23) 

- -  [~"+r r~. 

To f i n d  t h e  m e t r i c  o f  R i e m a n n i a n  s p a c e - - t i m e  o u t s i d e  a s t a t i c ,  s p h e r i c a l l y  s y m m e t r i c  
s o u r c e  we s e t  t h e  r i g h t  s i d e s  o f  E q s .  ( 2 . 2 3 )  e q u a l  t o  z e r o .  Then t h e  two f u n c t i o n s  X( r )  and 
v ( r )  mus t  s a t i s f y  t h e  t h r e e  e q u a t i o n s :  

2~." + rJ-;V + ~ / 2 - -  0 , 

~ ,2+2g ,v ,  ' 2 ~, . 2 t 
tT~ ~7~ : 0 ,  (2.24) 

;V' + V' + ~- ;V + ~- v, + ~,2---- 0. 

It is easy to see that the first equation of this system can be written in the form 

1 (r2X,)2 =0 .  2 (r2~') ' + 7 

Integrating this ordinary differential equation on r2~ ', we have 

r 2 s  - _ _  2C,r 
r+C/ 

where C1 is a constant of integration. Hence, it follows that 

S i n c e  as  r + oo t h e  c o m p o n e n t s  gab o f  t h e  m e t r i c  t e n s o r  o f  R i e m a n n i a n  s p a c e - - t i m e  must  
s a t i s f y  t h e  c o n d i t i o n  

lim g ~  = l ira %oe 2x = %~, 
t - + o o  r-+OO 

t h e  c o n s t a n t  o f  i n t e g r a t i o n  C2 mus t  be "set  e q u a l  t o  z e r o :  

s [ l q -  C ' ] .  ( 2 . 2 5 )  

S u b s t i t u t i n g  e x p r e s s i o n  ( 2 . 2 5 )  i n t o  t h e  s e c o n d  e q u a t i o n  o f  t h e  s y s t e m  ( 2 . 2 4 ) ,  we o b t a i n  

2C, 
~'1 - -  r2 Ct=" 

Hence, the function ~(r) has the form 

r--C1 (2.26) ~= Ca+lnT-~. 

Using expressions (2.25) and (2.26), it is easy to see that the third equation of system 
(2.24) is satisfied identically. 
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We now determine the constants of integration Cl and C3. Substituting expression (2.26) 
into relation (2.20), we obtain 

.[~_c,]2 
g~176 L r + C ~ J  " 

Since as r § ~ the component g00 of the metric tensor of Riemannian space--time should have 

the Galilean value g00 = I, the constant C3 should be set equal to zero. Expression (2.26) 
then assumes the form 

, r ' C ~  ( 2 . 2 7 )  

The constant of integration CI, on the other hand, by the Hilbert--Einstein equations 
(2.23) can be expressed as an integral over the volume of the source of the components of 
the energy-momentum tensor of matter. For this we multiply each equation of (2.23) by (I/2) x 

e ~+3X and subtract from the first equation the remaining equations. As a result, we obtain 
the following relation: 

2 w, . ,  , 7 4aG e'+~[,"+,'2qT7 +~, j=--7-[roo--r/--Tg--r~le'+aL 
A f t e r  t h e  i d e n t i t y  t r a n s f o r m a t i o n ,  we h a v e  

4~Q "T o __ T ~ - -  T~ - -  T~] e v+ax. r 2. [ r 2 v ' e ~ + q ' = 7  [ o , u 

The right side of this equality is nonzero for 0 < r < ~, where ~ is the radius of the source 
in isotropic coordinates. Therefore, integrating the given equation on r in the interval 
from zero to r > a and assuming that for the interior solution the functions v(r) and l(r) 
have no singularities, we obtain 

a 

o , ~ ,~  4 a O l  r2dr [T~176 
0 

S i n c e  away f r o m  t h e  s o u r c e  t h e  f u n c t i o n s  v ( r )  and  k ( r )  a r e  d e f i n e d  by  t h e  e x p r e s s i o n s  
( 2 . 2 5 )  and  ( 2 . 2 7 ) ,  t h e  l e f t  s i d e  o f  t h i s  r e l a t i o n  a s s u m e s  t h e  f o r m  

2C~ = 4~0 ~ r~dr [Too _ T / - -  T~ - -  T~1 exp (v + 3~). 

0 

U s i n g  t h e  H i l b e r t - - E i n s t e i n  e q u a t i o n s  and  n o t i n g  t h a t  i n  t h e  s p h e r i c a l l y  s y m m e t r i c  c a s e  
4 ~ r  2 exp  (v + 3 t )  c o r r e s p o n d s  t o  --f~gdV, we o b t a i n  f i n a l l y  

1 T ]----" f 

On the other hand, since as r + co it is necessary to ensure that Newton's law of gravi- 
tation holds, the constant of integration Cl must be connected with the gravitational mass M 
of the source by the relation 

GM 
CI = 2-7~. 

From this it follows that in Einstein's theory the gravitational mass of a static, 
spherically symmetric source is determined by the expression 

r 

M='$~'O I 1/--gRo~ ! l/--gdV[ro~ (2.28) 

Thus, outside a static, spherically symmetric source the metric has the form 

~-1 rg]2 
_ _  r g  4 ds = I 4r i c2dt2 [ 1 + ] [d,2 + ,.2 (do 2 + oer b+}Li ( 2 . 2 9 )  

1711 



where rg = 2GM/c 2 is the gravitational radius of the source. 

As Birkhoff showed, this metric describes also the gravitational field outside a non- 
static source with a distribution and notion of matter which is spherically symmetric. 

Introducing ~sotropic Cartesian coordinates x, y, z in correspondence with the equalities 

x - - - - r s i n O c o s %  y = r s i n O s i n %  z----rcosO,  

the interval (2.29) can be written in the form 

c at _ii+@l,[ax +ay2+az ] ' (2.30  Tg l+-~- 

where we have introduced the notation r = v/x 2 + y2 + z z 

In Einstein's theory the Schwarzschild metric is very often used as a touchstone in re- 
solving many questions. The broad application of this metric is explained by the fact that 
it represents an exact solution of the Hilbert--Einstein equations and is a sufficiently good 
idealization for describing the gravitational field outside real astrophysical objects for 
which the deviations of the distribution and the motion of matter from spherical symmetry 
are small. 

Due to the essential nonlinearity of the Hilbert--Einstein equations, in the majority 
of practically important cases it is not possible to find exact solutions of these equations. 
In particular, at the present time in the theory of general relativity no exact solution de- 
scribing the metric outside an insular source of gravitational radiation has been found in 
explicit form. 

Therefore, together with the search for exact solutions, analysis of various questions 
in Einstein's theory are carried out on the basis of approximate Hilbert--Einstein equations. 
One such case is the study of the propagation of small wavelike perturbations of the metric 
tensor of Riemannian space--time. Leaving aside the question of the legitimacy of applying 
the method of successive approximations to the Hilbert--Einstein equations (see, for example, 
[15]), we shall show how such an analysis is usually carried out in the general theory of 
relativity. 

To first approximation in the coupling constant it is usually assumed that the source 
of gravitational radiation creates weak gravitational perturbations on the background of flat 
space--time. The metric tensor of Riemannian space--time in this case is written in the form 

gn~=Yni@ -O % i - ~  �9 ( 2 . 3 1 )  C4 " �9 

where Yni is the Galilean metric tensor with signature (+, , , --). Substituting the ex- 
pression (2.31) into the Hilbert-Einstein equation (2.15) and linearizing them in G/c 4, we 
obtain 

[~nrn - -  03nO3i~mi - -  OrnOi q~ni ~ YnmO iO t~U= --  16~Tnm, ( 2 . 3 2 )  

1 
where [~]=OiO ~, ~ntrt=l~ntrt--~nmf~i i and all operations of lifting and lowering tensor indices 

are carried out by means of the metric tensor Ynm. Since the energy-momentum tensor of matter 
in Eq. (2.32) must be taken in zeroth approximation in G/c ~, from the covariation equation 
(2.17) it follows that it satisfies the relation 

OnTnrn = 0 .  ( 2 . 3 3 )  

Equations (2.32) in the approximation considered are invariant under transformations of 

the tensor ~bnm: 

~nm "-~ ~nm - -  an~,n - -  Om~n @ YnmOt~ t, ( 2 . 3 4 )  

where  ~ l  i s  an a r b i t r a r y  f o u r - v e c t o r .  We can  use  t h i s  a r b i t r a r i n e s s  i n  t h e  c h o i c e  o f  t h e  
t e n s o r  ~nm t o  e n s u r e  t h a t  t h e  a d d i t i o n a l  H i l b e r t - - d e  Donder  e q u a t i o n s  a r e  s a t i s f i e d :  

On~ nrn =0. (2.35) 
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Equations (2.32) then take the form 

~ = - -  16~Tnm. 
We write the tensors ~nm and Tnm as Fourier integrals in the time: 

(2.36) 

~nm(r, t)= 1 e-~Ot*"~ (r' o)do,  

T.m (r, t) = ~ e-~tT.~ (r, o) din. 

In the spectrum Tnm we distinguish the static part Tnm(0). It is obvious that the static 
part of the tensorial current will give only static solutions; we therefore omit it. Equa- 
tions (2.36) then assume the form 

+ + 

A solution of these equations can be written in the form (R = lr -- r'l); 

exPR(iOR) Trim (P, o) dV, 

Using the Hilbert--de Donder conditions (2.35) iw~ ~ = 3a~ ~n, we express the components ~0n 
in terms of the spatial components: 

 oo= _ 1 

i 

Outside the source of gravitational waves by a transformation (2.34) consistent with the 
Hilbert--de Donder conditions (2.35) for n~n = 0, we can impose on the wave components of the 
metric ~nm four more conditions according to the number of independent vectors ~n. For such 
conditions it is possible to choose the following: ~,0~ = 0, ~'~ = 0 (TT gauge). 

As a result of this transformation, we obtain 

+o% j 

=o, 

Considering the Hilbert--de Donder conditions (2.35), we can write these expressions in the 
form 

(2.37) 

where we have introduced the notation 

- (2 38) 

Thus, in first order of perturbation theory the wave solution of the Hilbert--Einstein 
equations contains in the general case six nonzero spatial components ~'~B, but only two of 
these are independent, because of the four Hilbert--de Donder conditions (2.35) and the equal- 
ity ~'~ = 0 expressing that the trace is zero. These additional conditions represent the 
known additional conditions for an irreducible representation with spin2 in the TT gauge; 
hence, in Einstein's theory the perturbation of the metric to first order in the constant 
G/c 4 has spin 2. 

Usually the wave solutions of Eqs. (2.36) are written in a somewhat different form which 
makes it possible to graphically demonstrate the quadrupole character of linear perturbations 
of the metric in Einstein's theory. For this we note that the spatial components ~B by Eq. 
(2.33) can be written in the form 

(2.39) 
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This relation is exact. It simplifies considerably if the linear dimensions of the 
source are considerably less than the distance from its center to the point of observation. 
Omitting nonwave terms decreasing faster than I/r, we obtain 

~ = 2~ ~ dVx= x~ exp ( io~R) [?oo q_ 2nv~'ov .t- rtvrtj'4~l, r ,j 

where n ~ = xV/r, nvn v = - - 1 .  Expression (2.38) can then be written in the form 

Introducing the projection operators 

satisfying the conditions 

(2.40) 

P~ =6~ -~-/z~tZg, (2.4 1 ) 

we can rewrite relation (2.37) in the form 

Substituting expression (2.40) into the Fourier integral, we obtain 

72 dt'd' ~0 dV ~x/ ~x~--fl ?~nx~x~) [Too q- 2rt~T~ q-n~n~T 8~] ret. S.~ = 

Here [...]ret denotes that the expression in square brackets is taken at the retarded time 
t' = t --R/c. If we introduce the traceless tensor of the generalized quadrupole moment 

~ = D~ q- 2n~D ~ + nvn~D ~ ,  
where 

(2.42) 

D=O= i dV (3x=x~-- ?=~x~x~)[TOO]ret: 

D=~ -- I dV (3x=x ~ -- y=~x6x~) [T ~ ret, 

D ~ =  I dV (3x~x ~ -  ~'~x6x~) [T ~v] ret, 

then  the  p e r t u r b a t i o n  components  of  m e t r i c  ( 2 . 3 1 )  can be w r i t t e n  in  the  form 

~ = l z ~ / r ;  ~0t=0 ,  ~onn=0, 

) 
Here and below the dot denotes the derivative with respect to time. 

Since usually rather slow motions" of the source are considered for which there are the 
estimates 

i ?001>>1 ?~ i>>1 f ~ l ,  

in expression (2.43) it is possible to set 

From expressions (2.31) and (2.43) it is easily found that the nonzero components of the 
curvature tensor in first approximation have the form 

Ro~% = - -  ~ \ c-~7-r ] ] 

a {ah., ~l R=~o~ = '2-~ []i~vn~-- h'~n=] [ I + 0 t ~r ] ]' 
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G ( 2 . 4 4 )  

In a region of space with linear dimensions considerably less than the distance from its 

center to the source of the metric waves, the spherical wave (2.43) may be considered an el- 

liptically polarized wave. Assuming, to be specific, that the region in question and the 

source of the metric waves are located on the z axis (n 3 = l, nl = n 2 = 0), for the nonzero 

components we obtain 

(DII ~_  _ q)22 = __ 1__ []')11 __/~522] 
3ro L-- ~' (2.45) 

qo~2 2 Oi2, 
- -  3ro 

where r0 is the distance from the source to the center of the region in question. In the 
case of radiation of monochromatic waves, the second derivatives with respect to time of the 

components of the quadrupole moment can be written in the form 

D n = d '~ exp [i ( k z  - -  Or)], 

b 22 =~ d 22 exp [i ( k z  - -  o3t)], 

~()12 = idI2 exp [i ( k z  - -  o3t)]. 

Therefore, from expression (2.45) we have 

{pn ~___ __ q022 ~___/'/0 COS 2 4 exp [i ( k z  - -  mr)], 
(9 ~2 ~- iho sin 2ap exp [i ( k z  - -  cot)], ( 2 . 4 6  

2d  t~ 
w h e r e  ho = 8 ~  ] / 4  (dr2) 2 @ (d 11 - -  d22) 2', tg 24---- a,,_~2, �9 

The degree of ellipticity of the polarization of the gravitational wave (2.46) is mea- 
sured by the quantity tan2@. If tan 2@ = 0 or co, then the wave is linearly polarized; if 
[tan2}[ = I, then the wave is circularly polarized. For other values of tan 2@ the wave is 

elliptically polarized. If tan2~ > 0, then the wave has right-hand polarization, while if 

tan2@ < 0 it has left-hand polarization. 

For the nonzero components of the curvature wave in the case we consider we have 

Q "'H 
f~OlOl = I~0113 : /~13~3 = --- ]~2323 -----/~0223 = -- ~0202 = -- 27 ~ ' (2.47 ) 

Rolo2=R132a=Ro213-- 2c, qoi2. 

It should be noted that the magnitude of the components of the curvature tensor (2.47) does 
not depend on the dimensions of the region considered. 

3. Energy--Momentum Pseudotensors of the Gravitational Field in 

the General Theory of Relativity 

Einstein considered that in the general theory of relativity the gravitational field 
with matter should possess some conservation law [32, p. 299]: "... by all means it should 
be required that matter and the gravitational field together satisfy laws of conservation 
of energy--momentum." In the opinion of Einstein this problem was completely resolved on the 
basis of "conservation laws" using the energy-momentum pseudotensor as the energy--momentum 
characteristic of the gravitational field. 

To obtain such "conservation laws" one usually [I I] proceeds as follows. If the Hil- 
bert--Einstein equations are written in the form 

8nO g t ~ k -  gik R = __ gT~k (3 ,, 1 

then the left side can be identically represented as the sum of two noncovariant quantities 

c" [ + ] O hikl + gTik, (3.2) 8~0 R i k - -  g i k R  g = ~ - x l  
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